Tofauti kati ya marekesbisho "Namba changamano"

3,897 bytes added ,  miaka 3 iliyopita
no edit summary
(Ukurasa ulianzishwa kwa kuandika ''''Namba changamano''' ni aina ya namba ambazo zina sehemu mbili, ya kwanza ni namba halisi, na ya pili ni namba inayofikiriwa tu. {{mbegu-hisabati...')
No edit summary
'''Namba changamano''' (kwa [[Kiingereza]]: [[:en:complex number]]) ni aina ya [[namba]] ambazo zina sehemu [[mbili]], ya kwanza ni [[namba halisi]], na ya pili ni [[namba inayofikiriwaya kufikirika]] tu.
* {{Citation |last=Ahlfors |first=Lars |authorlink=Lars Ahlfors |title=Complex analysis |publisher=McGraw-Hill |year=1979 |edition=3rd |isbn=978-0-07-000657-7}}
* {{Citation |last=Conway |first=John B. |title=Functions of One Complex Variable I |year=1986 |publisher=Springer |isbn=0-387-90328-3}}
* {{Citation |last1=Joshi |first1=Kapil D. |title=Foundations of Discrete Mathematics |publisher=[[John Wiley & Sons]] |location=New York |isbn=978-0-470-21152-6 |year=1989}}
* {{Citation |last=Pedoe |first=Dan |authorlink=Dan Pedoe |title=Geometry: A comprehensive course |publisher=Dover |year=1988 |isbn=0-486-65812-0}}
* {{Citation |last1=Press |first1=WH |last2=Teukolsky |first2=SA |last3=Vetterling |first3=WT |last4=Flannery |first4=BP |year=2007 |title=Numerical Recipes: The Art of Scientific Computing |edition=3rd |publisher=Cambridge University Press |publication-place=New York |isbn=978-0-521-88068-8 |chapter=Section 5.5 Complex Arithmetic |chapter-url=}}
* {{springer|id=c/c024140|title=Complex number|year=2001|first=E.D.|last=Solomentsev}}
* {{Citation |last1=Burton |first1=David M. |title=The History of Mathematics |publisher=[[McGraw-Hill]] |location=New York |edition=3rd |isbn=978-0-07-009465-9 |year=1995}}
* {{Citation |last1=Katz |first1=Victor J. |title=A History of Mathematics, Brief Version |publisher=[[Addison-Wesley]] |isbn=978-0-321-16193-2 |year=2004}}
* {{Citation |title=An Imaginary Tale: The Story of <math>\scriptstyle\sqrt{-1}</math> |first=Paul J. |last=Nahin |publisher=Princeton University Press |isbn=0-691-02795-1 |year=1998}}
*: A gentle introduction to the history of complex numbers and the beginnings of complex analysis.
* {{Citation |author1=H. D. Ebbinghaus |author2=H. Hermes |author3=F. Hirzebruch |author4=M. Koecher |author5=K. Mainzer |author6=J. Neukirch |author7=A. Prestel |author8=R. Remmert |title=Numbers |publisher=Springer |isbn=0-387-97497-0 |edition=hardcover |year=1991}}
*: An advanced perspective on the historical development of the concept of number.
* ''The Road to Reality: A Complete Guide to the Laws of the Universe'', by [[Roger Penrose]]; Alfred A. Knopf, 2005; {{isbn|0-679-45443-8}}. Chapters 4–7 in particular deal extensively (and enthusiastically) with complex numbers.
* ''Unknown Quantity: A Real and Imaginary History of Algebra'', by John Derbyshire; Joseph Henry Press; {{isbn|0-309-09657-X}} (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
* ''Visual Complex Analysis'', by [[Tristan Needham]]; Clarendon Press; {{isbn|0-19-853447-7}} (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.
*Conway, John B., ''Functions of One Complex Variable I'' (Graduate Texts in Mathematics), Springer; 2 edition (12 September 2005). {{isbn|0-387-90328-3}}.
==Viungo vya nje==
{{wikiversity|Complex Numbers}}
{{wikibooks|Calculus/Complex numbers}}
* [ Introduction to Complex Numbers from Khan Academy]
* [ Euler's Investigations on the Roots of Equations] at Convergence. MAA Mathematical Sciences Digital Library.
* [ John and Betty's Journey Through Complex Numbers]
* [ Dimensions: a math film.] Chapter 5 presents an introduction to complex arithmetic and [[stereographic projection]]. Chapter 6 discusses transformations of the complex plane, [[Julia set]]s, and the [[Mandelbrot set]].